2573 Publications

The orbital eccentricity of small planet systems

Vincent Van Eylen, Simon Albrecht, Xu Huang, Mariah G. MacDonald, Rebekah I. Dawson, Maxwell X. Cai, D. Foreman-Mackey, Mia S. Lundkvist, Victor Silva Aguirre, Ignas Snellen, J. N. Winn

We determine the orbital eccentricities of individual small Kepler planets, through a combination of asteroseismology and transit light-curve analysis. We are able to constrain the eccentricities of 51 systems with a single transiting planet, which supplement our previous measurements of 66 planets in multi-planet systems. Through a Bayesian hierarchical analysis, we find evidence that systems with only one detected transiting planet have a different eccentricity distribution than systems with multiple detected transiting planets. The eccentricity distribution of the single-transiting systems is well described by the positive half of a zero-mean Gaussian distribution with a dispersion σe=0.32±0.06, while the multiple-transit systems are consistent with σe=0.083+0.015−0.020. A mixture model suggests a fraction of 0.76+0.21−0.12 of single-transiting systems have a moderate eccentricity, represented by a Rayleigh distribution that peaks at 0.26+0.04−0.06. This finding may reflect differences in the formation pathways of systems with different numbers of transiting planets. We investigate the possibility that eccentricities are "self-excited" in closely packed planetary systems, as well as the influence of long-period giant companion planets. We find that both mechanisms can qualitatively explain the observations. We do not find any evidence for a correlation between eccentricity and stellar metallicity, as has been seen for giant planets. Neither do we find any evidence that orbital eccentricity is linked to the detection of a companion star. Along with this paper we make available all of the parameters and uncertainties in the eccentricity distributions, as well as the properties of individual systems, for use in future studies.

Show Abstract
July 2, 2018

Learning hard quantum distributions with variational autoencoders

Andrea Rocchetto, Edward Grant, Sergii Strelchuk, G. Carleo, Simone Severini

The exact description of many-body quantum systems represents one of the major challenges in modern physics, because it requires an amount of computational resources that scales exponentially with the size of the system. Simulating the evolution of a state, or even storing its description, rapidly becomes intractable for exact classical algorithms. Recently, machine learning techniques, in the form of restricted Boltzmann machines, have been proposed as a way to efficiently represent certain quantum states with applications in state tomography and ground state estimation. Here, we introduce a practically usable deep architecture for representing and sampling from probability distributions of quantum states. Our representation is based on variational auto-encoders, a type of generative model in the form of a neural network. We show that this model is able to learn efficient representations of states that are easy to simulate classically and can compress states that are not classically tractable. Specifically, we consider the learnability of a class of quantum states introduced by Fefferman and Umans. Such states are provably hard to sample for classical computers, but not for quantum ones, under plausible computational complexity assumptions. The good level of compression achieved for hard states suggests these methods can be suitable for characterizing states of the size expected in first generation quantum hardware.

Show Abstract

Black holes, gravitational waves and fundamental physics: a roadmap

Leor Barack, Vitor Cardoso, Samaya Nissanke, Thomas P. Sotiriou, Abbas Askar, Chris Belczynski, Gianfranco Bertone, Edi Bon, Diego Blas, Richard Brito, Tomasz Bulik, Clare Burrage, Christian T. Byrnes, Chiara Caprini, Masha Chernyakova, Piotr Chrusciel, Monica Colpi, Valeria Ferrari, Daniele Gaggero, Jonathan Gair, Juan Garcia-Bellido, S. F. Hassan, Lavinia Heisenberg, Martin Hendry, Ik Siong Heng, Carlos Herdeiro, Tanja Hinderer, Assaf Horesh, Bradley J. Kavanagh, Bence Kocsis, Michael Kramer, Alexandre Le Tiec, C. Mingarelli, Germano Nardini, Gijs Nelemans, Carlos Palenzuela, Paolo Pani, Albino Perego, Edward K. Porter, Elena M. Rossi, Patricia Schmidt, Alberto Sesana, Ulrich Sperhake, Antonio Stamerra, Leo C. Stein, Nicola Tamanini, Thomas M. Tauris, L. Arturo Urena-Lopez, Frederic Vincent, et al. (153 additional authors not shown)

The grand challenges of contemporary fundamental physics---dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem---all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress.

Show Abstract

Proving the short-wavelength approximation in Pulsar Timing Array gravitational-wave background searches

C. Mingarelli, Angelo B. Mingarelli

A low-frequency gravitational-wave background (GWB) from the cosmic merger history of supermassive black holes is expected to be detected the next few years by pulsar timing arrays. A GWB induces distinctive correlations in the pulsar residuals (the expected arrival time of the pulse minus its actual arrival time). Previously, simplifying assumptions were made in order to write an analytic expression for this correlation function, called the Hellings and Downs curve for an isotropic GWB, which depends on the angular separation of the pulsar pairs, the gravitational-wave frequency considered, and the distance to the pulsars. Here we prove analytically and generally that the Hellings and Downs curve can be recovered without making the usual assumption that the pulsars are all at the same distance from Earth. In fact, we show that the Hellings and Downs curve can be recovered for pulsars even at formally infinite distances from Earth.

Show Abstract

Transient superconductivity without superconductivity

Giuliano Chiriacò, A. Millis, Igor L. Aleiner

Recent experiments on K3C60 and layered copper-oxide materials have reported substantial changes in the optical response following application of an intense THz pulse. These data have been interpreted as the stimulation of a transient superconducting state even at temperatures well above the equilibrium transition temperature. We propose an alternative phenomenology based on the assumption that the pulse creates a non-superconducting, though non-equilibrium situation in which the linear response conductivity is negative. The negative conductivity implies that the spatially uniform pre-pulse state is unstable and evolves to a new state with a spontaneous electric polarization. This state exhibits coupled oscillations of entropy and electric charge whose coupling to incident probe radiation modifies the reflectivity, leading to an apparently superconducting-like response. The data can be fit within the model; dependencies of the reflectivity on polarization and angle of incidence of the probe are predicted and other experimental consequences are discussed.

Show Abstract

Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions

A. Price-Whelan, D. Hogg, Hans-Walter Rix, et. al.

Multi-epoch radial velocity measurements of stars can be used to identify stellar, sub-stellar, and planetary-mass companions. Even a small number of observation epochs can be informative about companions, though there can be multiple qualitatively different orbital solutions that fit the data. We have custom-built a Monte Carlo sampler (The Joker) that delivers reliable (and often highly multi-modal) posterior samplings for companion orbital parameters given sparse radial-velocity data. Here we use The Joker to perform a search for companions to 96,231 red-giant stars observed in the APOGEE survey (DR14) with ≥3 spectroscopic epochs. We select stars with probable companions by making a cut on our posterior belief about the amplitude of the stellar radial-velocity variation induced by the orbit. We provide (1) a catalog of 320 companions for which the stellar companion properties can be confidently determined, (2) a catalog of 4,898 stars that likely have companions, but would require more observations to uniquely determine the orbital properties, and (3) posterior samplings for the full orbital parameters for all stars in the parent sample. We show the characteristics of systems with confidently determined companion properties and highlight interesting systems with candidate compact object companions.

Show Abstract

A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE)

A. Boselli, M. Fossati, L. Ferrarese, ..., S. Tonnesen, et. al.

The Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) is a blind narrow-band Halpha+[NII] imaging survey carried out with MegaCam at the Canada-France-Hawaii Telescope. The survey covers the whole Virgo cluster region from its core to one virial radius (104 deg^2). The sensitivity of the survey is of f(Halpha) ~ 4 x 10^-17 erg sec-1 cm^-2 (5 sigma detection limit) for point sources and Sigma (Halpha) ~ 2 x 10^-18 erg sec^-1 cm^-2 arcsec^-2 (1 sigma detection limit at 3 arcsec resolution) for extended sources, making VESTIGE the deepest and largest blind narrow-band survey of a nearby cluster. This paper presents the survey in all its technical aspects, including the survey design, the observing strategy, the achieved sensitivity in both the narrow-band Halpha+[NII] and in the broad-band r filter used for the stellar continuum subtraction, the data reduction, calibration, and products, as well as its status after the first observing semester. We briefly describe the Halpha properties of galaxies located in a 4x1 deg^2 strip in the core of the cluster north of M87, where several extended tails of ionised gas are detected. This paper also lists the main scientific motivations of VESTIGE, which include the study of the effects of the environment on galaxy evolution, the fate of the stripped gas in cluster objects, the star formation process in nearby galaxies of different type and stellar mass, the determination of the Halpha luminosity function and of the Halpha scaling relations down to ~ 10^6 Mo stellar mass objects, and the reconstruction of the dynamical structure of the Virgo cluster. This unique set of data will also be used to study the HII luminosity function in hundreds of galaxies, the diffuse Halpha+[NII] emission of the Milky Way at high Galactic latitude, and the properties of emission line galaxies at high redshift.

Show Abstract

Ab Initio Electronic Structure Calculations by Auxiliary-Field Quantum Monte Carlo

The auxiliary-field quantum Monte Carlo (AFQMC) method provides a computational framework for solving the time-independent Schr{\"o}dinger equation in atoms, molecules, solids, and a variety of model systems by stochastic sampling. We introduce the theory and formalism behind this framework, briefly discuss the key technical steps that turn it into an effective and practical computational method, present several illustrative results, and conclude with comments on the prospects of ab initio computation by this framework.

Show Abstract

Magnetic orders in the hole doped three-band Hubbard model: spin spirals, nematicity, and ferromagnetic domain walls

Adam Chiciak, Ettore Vitali, H. Shi, S. Zhang

The copper-oxygen planes in cuprates have been at the center of the search for a theory of high-temperature superconductivity. We conduct an extensive study of the ground state of the three-band Hubbard (Emery) model in the underdoped regime. We focus on the magnetic and charge orders, and present results from generalized Hartree-Fock (GHF) calculations. The ground-state properties at the thermodynamic limit are challenging to pin down because of sensitivity to computational details, including the shapes and sizes of the supercells. We employ large-scale computations with various technical improvements to determine the orders within GHF. The ground state exhibits a rich phase diagram with hole doping as the charge transfer energy is varied, including ferromagnetic domain walls embedded in an antiferromagnetic background, spin spirals, and nematic order.

Show Abstract

Magnetic orders in the hole-doped three-band Hubbard model: Spin spirals, nematicity, and ferromagnetic domain walls

Adam Chiciak, Ettore Vitali, H. Fang, Shiwei Zhang

The Copper-Oxygen planes in cuprates have been at the center of the search for a theory of high-temperature superconductivity. We conduct an extensive study of the ground state of the three-band Hubbard (Emery) model in the underdoped regime. We focus on the magnetic and charge orders, and present results from generalized Hartree-Fock (GHF) calculations. The ground-state properties at the thermodynamic limit are challenging to pin down because of sensitivity to computational details including the shapes and sizes of the supercells. We employ large-scale computations with various technical improvements to determine the orders within GHF. The ground state exhibits a rich phase diagram with hole doping as the charge transfer energy is varied, including ferromagnetic domain walls embedded in an antiferromagnetic background, spin spirals, and nematic order.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.