2573 Publications

InstaMap: instant-NGP for cryo-EM density maps

Geoffrey Woollard, P. Cossio, S. Hanson, et al.

Despite the parallels between problems in computer vision and cryo-electron microscopy (cryo-EM), many state-of-the-art approaches from computer vision have yet to be adapted for cryo-EM. Within the computer-vision research community, implicits such as neural radiance fields (NeRFs) have enabled the detailed reconstruction of 3D objects from few images at different camera-viewing angles. While other neural implicits, specifically density fields, have been used to map conformational heterogeneity from noisy cryo-EM projection images, most approaches represent volume with an implicit function in Fourier space, which has disadvantages compared with solving the problem in real space, complicating, for instance, masking, constraining physics or geometry, and assessing local resolution. In this work, we build on a recent development in neural implicits, a multi-resolution hash-encoding framework called instant-NGP, that we use to represent the scalar volume directly in real space and apply it to the cryo-EM density-map reconstruction problem (InstaMap). We demonstrate that for both synthetic and real data, InstaMap for homogeneous reconstruction achieves higher resolution at shorter training stages than five other real-spaced representations. We propose a solution to noise overfitting, demonstrate that InstaMap is both lightweight and fast to train, implement masking from a user-provided input mask and extend it to molecular-shape heterogeneity via bending space using a per-image vector field.

Show Abstract

Geometry Linked to Untangling Efficiency Reveals Structure and Computation in Neural Populations

C. Chou , Royoung Kim, Luke A. Arend, Yao-Yuan Yang, Brett D. Mensh, Won Mok Shim, Matthew G. Perich, S. Chung

From an eagle spotting a fish in shimmering water to a scientist extracting patterns from noisy data, many cognitive tasks require untangling overlapping signals. Neural circuits achieve this by transforming complex sensory inputs into distinct, separable representations that guide behavior. Data-visualization techniques convey the geometry of these transformations, and decoding approaches quantify performance efficiency. However, we lack a framework for linking these two key aspects. Here we address this gap by introducing a data-driven analysis framework, which we call Geometry Linked to Untangling Efficiency (GLUE) with manifold capacity theory, that links changes in the geometrical properties of neural activity patterns to representational untangling at the computational level. We applied GLUE to over seven neuroscience datasets—spanning multiple organisms, tasks, and recording techniques—and found that task-relevant representations untangle in many domains, including along the cortical hierarchy, through learning, and over the course of intrinsic neural dynamics. Furthermore, GLUE can characterize the underlying geometric mechanisms of representational untangling, and explain how it facilitates efficient and robust computation. Beyond neuroscience, GLUE provides a powerful framework for quantifying information organization in data-intensive fields such as structural genomics and interpretable AI, where analyzing high-dimensional representations remains a fundamental challenge.

Show Abstract
March 31, 2025

Active Hydrodynamic Theory of Euchromatin and Heterochromatin

Alex Rautu, Alexandra Zidovska, David Saintillan, M. Shelley

The genome contains genetic information essential for cell's life. The genome's spatial organization inside the cell nucleus is critical for its proper function including gene regulation. The two major genomic compartments -- euchromatin and heterochromatin -- contain largely transcriptionally active and silenced genes, respectively, and exhibit distinct dynamics. In this work, we present a hydrodynamic framework that describes the large-scale behavior of euchromatin and heterochromatin, and accounts for the interplay of mechanical forces, active processes, and nuclear confinement. Our model shows contractile stresses from cross-linking proteins lead to the formation of heterochromatin droplets via mechanically driven phase separation. These droplets grow, coalesce, and in nuclear confinement, wet the boundary. Active processes, such as gene transcription in euchromatin, introduce non-equilibrium fluctuations that drive long-range, coherent motions of chromatin as well as the nucleoplasm, and thus alter the genome's spatial organization. These fluctuations also indirectly deform heterochromatin droplets, by continuously changing their shape. Taken together, our findings reveal how active forces, mechanical stresses and hydrodynamic flows contribute to the genome's organization at large scales and provide a physical framework for understanding chromatin organization and dynamics in live cells.

Show Abstract
March 26, 2025

Recent Advances in Membrane Protein Simulations

James C. Gumbart, S. Hanson

imulating membrane proteins accurately combines two challenges into one: properly capturing the structure and dynamics of proteins as well as correctly representing the membrane environment in which they are usually embedded. Beginning with pioneering efforts in the 1980s and 1990s,1−7 both challenges have been met with increasing success over the years. Simulations of membrane proteins in realistic cellular contexts over many microseconds are now common.Concomitant advances in the determination of membrane protein structures, with over 50 unique structures determined 8 annually have further expanded the reach of simulations in this area. This Special Issue highlights a number of recent molecular dynamics (MD) simulations of membrane proteins and covers a wide range of applications and specialized techniques.

Show Abstract

Sampling From Multiscale Densities With Delayed Rejection Generalized Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is the mainstay of applied Bayesian inference for differentiable models. However, HMC still struggles to sample from hierarchical models that induce densities with multiscale geometry: a large step size is needed to efficiently explore low curvature regions while a small step size is needed to accurately explore high curvature regions. We introduce the delayed rejection generalized HMC (DR-G-HMC) sampler that overcomes this challenge by employing dynamic step size selection, inspired by differential equation solvers. In generalized HMC, each iteration does a single leapfrog step. DR-G-HMC sequentially makes proposals with geometrically decreasing step sizes upon rejection of earlier proposals. This simulates Hamiltonian dynamics that can adjust its step size along a (stochastic) Hamiltonian trajectory to deal with regions of high curvature. DR-G-HMC makes generalized HMC competitive by decreasing the number of rejections which otherwise cause inefficient backtracking and prevents directed movement. We present experiments to demonstrate that DR-G-HMC (1) correctly samples from multiscale densities, (2) makes generalized HMC methods competitive with the state of the art No-U-Turn sampler, and (3) is robust to tuning parameters.

Show Abstract

Hippocampal neuronal activity is aligned with action plans

Ipshita Zutshi, Athina Apostolelli, Wannan Yang, S. Zheng, Tora Dohi, E. Balzani, A. Williams, C. Savin, György Buzsáki

Neurons in the hippocampus are correlated with different variables, including space, time, sensory cues, rewards and actions, in which the extent of tuning depends on ongoing task demands1,2,3,4,5,6,7,8. However, it remains uncertain whether such diverse tuning corresponds to distinct functions within the hippocampal network or whether a more generic computation can account for these observations9. Here, to disentangle the contribution of externally driven cues versus internal computation, we developed a task in mice in which space, auditory tones, rewards and context were juxtaposed with changing relevance. High-density electrophysiological recordings revealed that neurons were tuned to each of these modalities. By comparing movement paths and action sequences, we observed that external variables had limited direct influence on hippocampal firing. Instead, spiking was influenced by online action plans and modulated by goal uncertainty. Our results suggest that internally generated cell assembly sequences are selected and updated by action plans towards deliberate goals. The apparent tuning of hippocampal neuronal spiking to different sensory modalities might emerge due to alignment to the afforded action progression within a task rather than representation of external cues.

Show Abstract

Level Set Teleportation: An Optimization Perspective

Aaron Mishkin, A. Bietti, R. M. Gower

We study level set teleportation, an optimization routine which tries to accelerate gradient descent (GD) by maximizing the gradient norm over a level set of the objective. While teleportation intuitively speeds-up GD via bigger steps, current work lacks convergence theory for convex functions, guarantees for solving the teleportation operator, and even clear empirical evidence showing this acceleration. We resolve these open questions. For convex functions satisfying Hessian stability, we prove that GD with teleportation obtains a combined sub-linear/linear convergence rate which is strictly faster than GD when the optimality gap is small. This is in sharp contrast to the standard (strongly) convex setting, where teleportation neither improves nor worsens convergence. To evaluate teleportation in practice, we develop a projected-gradient method requiring only Hessian-vector products. We use this to show that gradient methods with access to a teleportation oracle out-perform their standard versions on a variety of problems. We also find that GD with teleportation is faster than truncated Newton methods, particularly for non-convex optimization.

Show Abstract

A model for boundary-driven tissue morphogenesis

Daniel S. Alber, Alexandre O. Jacinto, S. Shvartsman, et al.

Tissue deformations during morphogenesis can be active, driven by internal processes, or passive, resulting from stresses applied at their boundaries. Here, we introduce the Drosophila hindgut primordium as a model for studying boundary-driven tissue morphogenesis. We characterize its deformations and show that its complex shape changes can be a passive consequence of the deformations of the active regions of the embryo that surround it. First, we find an intermediate characteristic triangular shape in the 3D deformations of the hindgut. We construct a minimal model of the hindgut primordium as an elastic ring deformed by active midgut invagination and germ band extension on an ellipsoidal surface, which robustly captures the symmetry-breaking into this triangular shape. We then quantify the 3D kinematics of the tissue by a set of contours and discover that the hindgut deforms in two stages: an initial translation on the curved embryo surface followed by a rapid breaking of shape symmetry. We extend our model to show that the contour kinematics in both stages are consistent with our passive picture. Our results suggest that the role of in-plane deformations during hindgut morphogenesis is to translate the tissue to a region with anisotropic embryonic curvature and show that uniform boundary conditions are sufficient to generate the observed nonuniform shape change. Our work thus provides a possible explanation for the various characteristic shapes of blastopore-equivalents in different organisms and a framework for the mechanical emergence of global morphologies in complex developmental systems.

Show Abstract
March 5, 2025

Chirped amplitude mode in photo-excited superconductors

Thomas Blommel, J. Kaye, Yuta Murakami, Emanuel Gull, Denis Golež

Using a state-of-the-art numerical scheme, we show that the Higgs mode under excitation exhibits chirped oscillations and exponential decay when fluctuations are included. This is in stark contrast to conventional BCS collisionless dynamics which predict power-law decay and the absence of chirping. The chirped amplitude mode enables us to determine the local modification of the effective potential even when the system is in a long-lived prethermal state. We then show that this chirped amplitude mode is an experimentally observable quantity since the photoinduced (super)current in pump-probe experiments serves as an efficient proxy for the order parameter dynamics, including the chirped dynamics. Our result is based on the attractive Hubbard model using dynamical mean-field theory within the symmetry-broken state after a excitation across the superconducting gap. Since the collective response involves long timescales, we extend the hierarchical low-rank compression method for nonequilibrium Green's functions to symmetry-broken states and show that it serves as an efficient representation despite long-lived memory kernels.

Show Abstract

Responses of neurons in macaque V4 to object and texture images

Justin D. Lieber, T. D. Oleskiw , Laura Palmieri, E. P. Simoncelli, J. A. Movshon

Humans and monkeys can rapidly recognize objects in everyday scenes. While it is known that this ability relies on neural computations in the ventral stream of visual cortex, it is not well understood where this computation first arises. Previous work suggests selectivity for object shape first emerges in area V4. To explore the mechanisms of this selectivity, we generated a continuum of images between “scrambled” textures and photographic images of both natural and man-made environments, using techniques that preserve the local statistics of the original image while discarding information about scene and shape. We measured image responses from single units in area V4 from two awake macaque monkeys. Neuronal populations in V4 could reliably distinguish photographic from scrambled images, could more reliably discriminate between photographic images than between scrambled images, and responded with greater dynamic range to photographic images than scrambled images. Responses to partially scrambled images were more similar to fully scrambled responses than photographic responses, even for perceptually subtle changes. This same pattern emerged when these images were analyzed with an image-computable similarity metric that predicts human judgements of image degradation (DISTS - Deep Image Structure and Texture Similarity). Finally, analysis of response dynamics showed that sensitivity to differences between photographic and scrambled responses grew slowly, peaked 190 ms after response onset, and persisted for hundreds of milliseconds following response offset, suggesting that this signal may arise from recurrent mechanisms.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.