2596 Publications

Hippocampal neuronal activity is aligned with action plans

Ipshita Zutshi, Athina Apostolelli, Wannan Yang, S. Zheng, Tora Dohi, E. Balzani, A. Williams, C. Savin, György Buzsáki

Neurons in the hippocampus are correlated with different variables, including space, time, sensory cues, rewards and actions, in which the extent of tuning depends on ongoing task demands1,2,3,4,5,6,7,8. However, it remains uncertain whether such diverse tuning corresponds to distinct functions within the hippocampal network or whether a more generic computation can account for these observations9. Here, to disentangle the contribution of externally driven cues versus internal computation, we developed a task in mice in which space, auditory tones, rewards and context were juxtaposed with changing relevance. High-density electrophysiological recordings revealed that neurons were tuned to each of these modalities. By comparing movement paths and action sequences, we observed that external variables had limited direct influence on hippocampal firing. Instead, spiking was influenced by online action plans and modulated by goal uncertainty. Our results suggest that internally generated cell assembly sequences are selected and updated by action plans towards deliberate goals. The apparent tuning of hippocampal neuronal spiking to different sensory modalities might emerge due to alignment to the afforded action progression within a task rather than representation of external cues.

Show Abstract

Level Set Teleportation: An Optimization Perspective

Aaron Mishkin, A. Bietti, R. M. Gower

We study level set teleportation, an optimization routine which tries to accelerate gradient descent (GD) by maximizing the gradient norm over a level set of the objective. While teleportation intuitively speeds-up GD via bigger steps, current work lacks convergence theory for convex functions, guarantees for solving the teleportation operator, and even clear empirical evidence showing this acceleration. We resolve these open questions. For convex functions satisfying Hessian stability, we prove that GD with teleportation obtains a combined sub-linear/linear convergence rate which is strictly faster than GD when the optimality gap is small. This is in sharp contrast to the standard (strongly) convex setting, where teleportation neither improves nor worsens convergence. To evaluate teleportation in practice, we develop a projected-gradient method requiring only Hessian-vector products. We use this to show that gradient methods with access to a teleportation oracle out-perform their standard versions on a variety of problems. We also find that GD with teleportation is faster than truncated Newton methods, particularly for non-convex optimization.

Show Abstract

A model for boundary-driven tissue morphogenesis

Daniel S. Alber, Alexandre O. Jacinto, S. Shvartsman, et al.

Tissue deformations during morphogenesis can be active, driven by internal processes, or passive, resulting from stresses applied at their boundaries. Here, we introduce the Drosophila hindgut primordium as a model for studying boundary-driven tissue morphogenesis. We characterize its deformations and show that its complex shape changes can be a passive consequence of the deformations of the active regions of the embryo that surround it. First, we find an intermediate characteristic triangular shape in the 3D deformations of the hindgut. We construct a minimal model of the hindgut primordium as an elastic ring deformed by active midgut invagination and germ band extension on an ellipsoidal surface, which robustly captures the symmetry-breaking into this triangular shape. We then quantify the 3D kinematics of the tissue by a set of contours and discover that the hindgut deforms in two stages: an initial translation on the curved embryo surface followed by a rapid breaking of shape symmetry. We extend our model to show that the contour kinematics in both stages are consistent with our passive picture. Our results suggest that the role of in-plane deformations during hindgut morphogenesis is to translate the tissue to a region with anisotropic embryonic curvature and show that uniform boundary conditions are sufficient to generate the observed nonuniform shape change. Our work thus provides a possible explanation for the various characteristic shapes of blastopore-equivalents in different organisms and a framework for the mechanical emergence of global morphologies in complex developmental systems.

Show Abstract
March 5, 2025

Chirped amplitude mode in photo-excited superconductors

Thomas Blommel, J. Kaye, Yuta Murakami, Emanuel Gull, Denis Golež

Using a state-of-the-art numerical scheme, we show that the Higgs mode under excitation exhibits chirped oscillations and exponential decay when fluctuations are included. This is in stark contrast to conventional BCS collisionless dynamics which predict power-law decay and the absence of chirping. The chirped amplitude mode enables us to determine the local modification of the effective potential even when the system is in a long-lived prethermal state. We then show that this chirped amplitude mode is an experimentally observable quantity since the photoinduced (super)current in pump-probe experiments serves as an efficient proxy for the order parameter dynamics, including the chirped dynamics. Our result is based on the attractive Hubbard model using dynamical mean-field theory within the symmetry-broken state after a excitation across the superconducting gap. Since the collective response involves long timescales, we extend the hierarchical low-rank compression method for nonequilibrium Green's functions to symmetry-broken states and show that it serves as an efficient representation despite long-lived memory kernels.

Show Abstract

Responses of neurons in macaque V4 to object and texture images

Justin D. Lieber, T. D. Oleskiw , Laura Palmieri, E. P. Simoncelli, J. A. Movshon

Humans and monkeys can rapidly recognize objects in everyday scenes. While it is known that this ability relies on neural computations in the ventral stream of visual cortex, it is not well understood where this computation first arises. Previous work suggests selectivity for object shape first emerges in area V4. To explore the mechanisms of this selectivity, we generated a continuum of images between “scrambled” textures and photographic images of both natural and man-made environments, using techniques that preserve the local statistics of the original image while discarding information about scene and shape. We measured image responses from single units in area V4 from two awake macaque monkeys. Neuronal populations in V4 could reliably distinguish photographic from scrambled images, could more reliably discriminate between photographic images than between scrambled images, and responded with greater dynamic range to photographic images than scrambled images. Responses to partially scrambled images were more similar to fully scrambled responses than photographic responses, even for perceptually subtle changes. This same pattern emerged when these images were analyzed with an image-computable similarity metric that predicts human judgements of image degradation (DISTS - Deep Image Structure and Texture Similarity). Finally, analysis of response dynamics showed that sensitivity to differences between photographic and scrambled responses grew slowly, peaked 190 ms after response onset, and persisted for hundreds of milliseconds following response offset, suggesting that this signal may arise from recurrent mechanisms.

Show Abstract

Heuristic energy-based cyclic peptide design

Q. Zhu, V. Mulligan, Dennis Shasha

Rational computational design is crucial to the pursuit of novel drugs and therapeutic agents. Meso-scale cyclic peptides, which consist of 7-40 amino acid residues, are of particular interest due to their conformational rigidity, binding specificity, degradation resistance, and potential cell permeability. Because there are few natural cyclic peptides, de novo design involving non-canonical amino acids is a potentially useful goal. Here, we develop an efficient pipeline (CyclicChamp) for cyclic peptide design. After converting the cyclic constraint into an error function, we employ a variant of simulated annealing to search for low-energy peptide backbones while maintaining peptide closure. Compared to the previous random sampling approach, which was capable of sampling conformations of cyclic peptides of up to 14 residues, our method both greatly accelerates the computation speed for sampling conformations of small macrocycles (ca. 7 residues), and addresses the high-dimensionality challenge that large macrocycle designs often encounter. As a result, CyclicChamp makes conformational sampling tractable for 15-to 24-residue cyclic peptides, thus permitting the design of macrocycles in this size range. Microsecond-length molecular dynamics simulations on the resulting 15, 20, and 24 amino acid cyclic designs identify designs with kinetic stability. To test their thermodynamic stability, we perform additional replica exchange molecular dynamics simulations and generate free energy surfaces. Three 15-residue designs, one 20-residue and one 24-residue design emerge as promising candidates.

Show Abstract
March 1, 2025

CyclicCAE: A Conformational Autoencoder for Efficient Heterochiral Macrocyclic Backbone Sampling

Andrew C. Powers, D. Renfrew, Parisa Hosseinzadeh, V. Mulligan

Macrocycles are a promising therapeutic class. The incorporation of heterochiral and non-natural chemical building-blocks presents challenges for rational design, however. With no existing machine learning methods tailored for heterochiral macrocycle design, we developed a novel convolutional autoencoder model to rapidly generate energetically favorable macrocycle backbones for heterochiral design and structure prediction. Our approach surpasses the current state-of-the-art method, Generalized Kinematic loop closure (GenKIC) in the Rosetta software suite. Given the absence of large, available macrocycle datasets, we created a custom dataset in-house and in silico. Our model, CyclicCAE, produces energetically stable backbones and designable structures more rapidly than GenKIC. It enables users to perform energy minimization, generate structurally similar or diverse inputs via MCMC, and conduct inpainting with fixed anchors or motifs. We propose that this novel method will accelerate the development of stable macrocycles, speeding up macrocycle drug design pipelines.

Show Abstract
February 27, 2025

Geometric, cell cycle and maternal-to-zygotic transition-associated YAP dynamics during preimplantation embryo development

Madeleine Chalifoux, M. Avdeeva, Eszter Posfai

During the first cell fate decision in mammalian embryos the inner cell mass cells, which will give rise to the embryo proper and other extraembryonic tissues, segregate from the trophectoderm cells, the precursors of the placenta. Cell fate segregation proceeds in a gradual manner encompassing two rounds of cell division, as well as cell positional and morphological changes. While it is known that the activity of the Hippo signaling pathway and the subcellular localization of its downstream effector YAP dictate lineage specific gene expression, the response of YAP to these dynamic cellular changes remains incompletely understood. Here we address these questions by quantitative live imaging of endogenously tagged YAP while simultaneously monitoring geometric cellular features and cell cycle progression throughout cell fate segregation. We apply a probabilistic model to our dynamic data, providing a quantitative characterization of the mutual effects of YAP and cellular relative exposed area, which has previously been shown to correlate with subcellular YAP localization in fixed samples. Additionally, we study how nuclear YAP levels are influenced by other factors, such as the decreasing pool of maternally provided YAP that is partitioned to daughter cells through cleavage divisions, cell cycle-associated nuclear volume changes, and a delay after divisions in adjusting YAP levels to new cell positions. Interestingly, we find that establishing low nuclear YAP levels required for the inner cell mass fate is largely achieved by passive cell cycle-associated mechanisms. Moreover, contrary to expectations, we find that mechanical perturbations that result in cell shape changes do not influence YAP localization in the embryo. Together our work identifies how various inputs are integrated over a dynamic developmental time course to shape the levels of a key molecular determinant of the first cell fate choice.

Show Abstract
February 27, 2025

Spectral Analysis of Representational Similarity with Limited Neurons

Hyunmo Kang, A. Canatar, S. Chung

Measuring representational similarity between neural recordings and computational models is challenging due to constraints on the number of
neurons that can be recorded simultaneously. In this work, we investigate how such limitations affect similarity measures, focusing on Canonical Correlation Analysis (CCA) and Centered Kernel Alignment (CKA). Leveraging tools from Random Matrix Theory, we develop a predictive spectral framework for these measures and demonstrate that finite neuron sampling systematically underestimates similarity due to eigenvector de-
localization. To overcome this, we introduce a denoising method to infer population-level similarity, enabling accurate analysis even with small
neuron samples. Our theory is validated on synthetic and real datasets, offering practical strategies for interpreting neural data under finite sampling constraints.

Show Abstract
February 27, 2025

Type-I Superconductors in the Limit as the London Penetration Depth Goes to 0

C. Epstein, M. Rachh, Yuguan Wang

This paper provides an explicit formula for the approximate solution of the static London equations. These equations describe the currents and magnetic fields in a Type-I superconductor. We represent the magnetic field as a 2-form and the current as a 1-form, and assume that the superconducting material is contained in a bounded, connected set, Ω, with smooth boundary. The London penetration depth gives an estimate for the thickness of the layer near ∂Ω where the current is largely carried. In an earlier paper, we introduced a system of Fredholm integral equations of second kind, on ∂Ω, for solving the physically relevant scattering problems in this context. In real Type-I superconductors the penetration depth is very small, typically about 100nm, which often renders the integral equation approach computationally intractable. In this paper we provide an explicit formula for approximate solutions, with essentially optimal error estimates, as the penetration depth tends to zero. Our work makes extensive use of the Hodge decomposition of differential forms on manifolds with boundary, and thus evokes Kohn's work on the tangential Cauchy-Riemann equations.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.