2573 Publications

Strontium Ferrite Under Pressure: Potential Analogue to Strontium Ruthenate

Despite the significant attention it has garnered over the last thirty years, the paradigmatic material strontium ruthenate remains the focus of critical questions regarding strongly correlated materials. As an alternative platform to unravel some of its perplexing characteristics, we propose to study the isostructural and more correlated material strontium ferrite. Using density functional theory combined with dynamical mean-field theory, we attribute the experimentally observed insulating behavior at zero pressure to strong local electronic correlations generated by Mott and Hund's physics. At high pressure, our simulations reproduce the reported insulator-to-metal transition around 18 GPa. Along with distinctive features of a Hund's metal, the resulting metallic state is found to display an electronic structure analogous to that of strontium ruthenate, suggesting that it could exhibit similar low-energy properties.
Show Abstract

Filling-induced Mott transition and pseudogap physics in the triangular lattice Hubbard model

It has been reported that upon doping a Mott insulator, there can be a crossover to a strongly correlated metallic phase followed by a first-order transition to another thermodynamically stable metallic phase. We call this first-order metal-metal transition the Sordi transition. To show theoretically that this transition is observable, it is important to provide calculations in situations where magnetic phase transitions do not hide the Sordi transition. It is also important to show that it can be found on large clusters and with different approaches. Here, we use the dynamical cluster approximation to reveal the Sordi transition on a triangular lattice at finite temperature in situations where there is no long-range magnetic correlations. This is relevant for experiments on candidate spin-liquid organics. We also show that the metallic phase closest to the insulator is a distinct pseudogap phase that occurs because of strong interactions and short-range correlations
Show Abstract

Classification of Classical Spin Liquids: Topological Quantum Chemistry and Crystalline Symmetry

Frustrated magnetic systems can host highly interesting phases known as classical spin liquids (CSLs), which feature extensive ground state degeneracy and lack long-range magnetic order. Recently, Yan and Benton et al. proposed a classification scheme of CSLs in the large-N (soft spin) limit [arXiv.2305.00155], [arXiv:2305.19189]. This scheme classifies CSLs into two categories: the algebraic CSLs and the fragile topological CSLs, each with their own correlation properties, low energy effective description, and finer classification frameworks. In this work, we further develop the classification scheme by considering the role of crystalline symmetry. We present a mathematical framework for computing the band representation of the flat bands in the spectrum of these CSLs, which extends beyond the conventional representation analysis. It allows one to determine whether the algebraic CSLs, which features gapless points on their bottom flat bands, are protected by symmetry or not. It also provides more information on the finer classifications of algebraic and fragile topological CSLs. We demonstrate this framework via concrete examples and showcase its power by constructing a pinch-line algebraic CSL protected by symmetry.
Show Abstract

Vacancy-induced tunable Kondo effect in twisted bilayer graphene

In single sheets of graphene, vacancy-induced states have been shown to host an effective spin-1/2 hole that can be Kondo-screened at low temperatures. Here, we show how these vacancy-induced impurity states survive in twisted bilayer graphene (TBG), which thus provides a tunable system to probe the critical destruction of the Kondo effect in pseudogap hosts. Ab-initio calculations and atomic-scale modeling are used to determine the nature of the vacancy states in the vicinity of the magic angle in TBG, demonstrating that the vacancy can be treated as a quantum impurity. Utilizing this insight, we construct an Anderson impurity model with a TBG host that we solve using the numerical renormalization group combined with the kernel polynomial method. We determine the phase diagram of the model and show how there is a strict dichotomy between vacancies in the AA / BB versus AB / BA tunneling regions. In AB / BA vacancies, we find that the Kondo temperature at the magic angle develops a broad distribution with a tail to vanishing temperatures due to multifractal wavefunctions at the magic angle. We argue that the scanning tunneling microscopy response in the vicinity of the vacancy can act as a non-trivial probe of both the critical single-particle states and the underlying many-body ground state in magic-angle TBG.
Show Abstract

Altermagnetic Routes to Majorana Modes in Zero Net Magnetization

We propose heterostructures that realize first and second order topological superconductivity with vanishing net magnetization by utilizing altermagnetism. Such platforms may offer a significant improvement over conventional platforms with uniform magnetization since the latter suppresses the superconducting gap. We first introduce a 1D semiconductor-superconductor structure in proximity to an altermagnet which realizes end Majorana zero modes (MZMs) with vanishing net magnetization. Additionally, a coexisting Zeeman term provides a tuning knob to distinguish topological and trivial zero modes. We then propose 2D altermagnetic platforms that can realize chiral Majorana fermions or higher order corner MZMs. Our work paves the way towards realizing Majorana boundary states with an alternative source of time-reversal breaking and zero net magnetization.
Show Abstract

Dielectric Environment Sensitivity of Carbon Centers in Hexagonal Boron Nitride

A. Hampel
Abstract A key advantage of utilizing van-der-Waals (vdW) materials as defect-hosting platforms for quantum applications is the controllable proximity of the defect to the surface or the substrate allowing for improved light extraction, enhanced coupling with photonic elements, or more sensitive metrology. However, this aspect results in a significant challenge for defect identification and characterization, as the defect's properties depend on the the atomic environment. This study explores how the environment can influence the properties of carbon impurity centers in hexagonal boron nitride (hBN). It compares the optical and electronic properties of such defects between bulk-like and few-layer films, showing alteration of the zero-phonon line energies and their phonon sidebands, and enhancements of inhomogeneous broadenings. To disentangle the mechanisms responsible for these changes, including the atomic structure, electronic wavefunctions, and dielectric screening, it combines ab initio calculations with a quantum-embedding approach. By studying various carbon-based defects embedded in monolayer and bulk hBN, it demonstrates that the dominant effect of the change in the environment is the screening of density–density Coulomb interactions between the defect orbitals. The comparative analysis of experimental and theoretical findings paves the way for improved identification of defects in low-dimensional materials and the development of atomic scale sensors for dielectric environments.
Show Abstract

On the generality of symmetry breaking and dissipative freezing in quantum trajectories

Recently, several studies involving open quantum systems which possess a strong symmetry have observed that every individual trajectory in the Monte Carlo unravelling of the master equation will dynamically select a specific symmetry sector to freeze into in the long-time limit. This phenomenon has been termed dissipative freezing, and in this paper we argue, by presenting several simple mathematical perspectives on the problem, that it is a general consequence of the presence of a strong symmetry in an open system with only a few exceptions. Using a number of example systems we illustrate these arguments, uncovering an explicit relationship between the spectral properties of the Liouvillian in off-diagonal symmetry sectors and the time it takes for freezing to occur. In the limiting case that eigenmodes with purely imaginary eigenvalues are manifest in these sectors, freezing fails to occur. Such modes indicate the preservation of information and coherences between symmetry sectors of the system and can lead to phenomena such as non-stationarity and synchronisation. The absence of freezing at the level of a single quantum trajectory provides a simple, computationally efficient way of identifying these traceless modes.
Show Abstract

TRIQS/Nevanlinna: Implementation of the Nevanlinna Analytic Continuation method for noise-free data

A. Hampel, N. Wentzell, E. Gull
We present the TRIQS/Nevanlinna analytic continuation package, an efficient implementation of the methods proposed by J. Fei et al in [Phys. Rev. Lett. 126, 056402 (2021)] and [Phys. Rev. B 104, 165111 (2021)]. TRIQS/Nevanlinna strives to provide a high quality open source (distributed under the GNU General Public License version 3) alternative to the more widely adopted Maximum Entropy based analytic continuation programs. With the additional Hardy functions optimization procedure, it allows for an accurate resolution of wide band and sharp features in the spectral function. Those problems can be formulated in terms of imaginary time or Matsubara frequency response functions. The application is based on the TRIQS C++/Python framework, which allows for easy interoperability with other TRIQS-based applications, electronic band structure codes and visualization tools. Similar to other TRIQS packages, it comes with a convenient Python interface.
Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.