Simons Collaboration on the Many Electron Problem

The Simons Collaboration on the Many Electron Problem brings together a group of scientists focused on developing new ways to solve the quantum mechanical behavior of systems comprised of many interacting electrons, with the goal of revolutionizing our ability to calculate and understand the properties of molecules and solids important in chemistry, physics and everyday life.



Determining the quantum mechanical behavior of a large number of interacting electrons is one of the grand challenges of modern science. The solution of this ‘many electron problem’ is important because electrons determine the physical properties of materials and molecules: whether, for example, they are hard or soft, reactive or inert, conducting or insulating, superconducting or magnetic, good at converting solar radiation to more useful forms of energy or not.

Recent years have seen spectacular progress in unraveling the subtleties of quantum mechanics, improvements in ideas, in algorithms and in hardware that have transformed our ability to perform numerical computations, and impressive advancements in our understanding of the physics and chemistry of interacting electrons in molecules and bulk materials. The Simons Collaboration on the Many Electron Problem aims to take advantage of these developments, bringing an internationally acclaimed group of scientists together to further refine the new developments and combine the different strands of progress into a new set of tools for predicting the structure and electronic properties of the molecules and materials important to all of us.