2573 Publications

A fast spectral method for electrostatics in doubly-periodic slit channels

Ondrej Maxian, Raul P. Peláez, L. Greengard, Aleksandar Donev

We develop a fast method for computing the electrostatic energy and forces for a collection of charges in doubly-periodic slabs with jumps in the dielectric permittivity at the slab boundaries. Our method achieves spectral accuracy by using Ewald splitting to replace the original Poisson equation for nearly-singular sources with a smooth far-field Poisson equation, combined with a localized near-field correction. Unlike existing spectral Ewald methods, which make use of the Fourier transform in the aperiodic direction, we recast the problem as a two-point boundary value problem in the aperiodic direction for each transverse Fourier mode, for which exact analytic boundary conditions are available. We solve each of these boundary value problems using a fast, well-conditioned Chebyshev method. In the presence of dielectric jumps, combining Ewald splitting with the classical method of images results in smoothed charge distributions which overlap the dielectric boundaries themselves. We show how to preserve high order accuracy in this case through the use of a harmonic correction which involves solving a simple Laplace equation with smooth boundary data. We implement our method on Graphical Processing Units, and combine our doubly-periodic Poisson solver with Brownian Dynamics to study the equilibrium structure of double layers in binary electrolytes confined by dielectric boundaries. Consistent with prior studies, we find strong charge depletion near the interfaces due to repulsive interactions with image charges, which points to the need for incorporating polarization effects in understanding confined electrolytes, both theoretically and computationally.

Show Abstract

CaImAn an open source tool for scalable calcium imaging data analysis

J. Friedrich, P. Gunn, A. Giovannucci , J. Kalfon, B. Brown, S. Koay, J. Taxidis, F. Najafi, J. Gauthier, P. Zhou, D. Chklovskii, E. Pnevmatikakis, B.S. Khakh, D.W. Tank

Advances in fluorescence microscopy enable monitoring larger brain areas in-vivo with finer time resolution. The resulting data rates require reproducible analysis pipelines that are reliable, fully automated, and scalable to datasets generated over the course of months. We present CaImAn, an open-source library for calcium imaging data analysis. CaImAn provides automatic and scalable methods to address problems common to pre-processing, including motion correction, neural activity identification, and registration across different sessions of data collection. It does this while requiring minimal user intervention, with good scalability on computers ranging from laptops to high-performance computing clusters. CaImAn is suitable for two-photon and one-photon imaging, and also enables real-time analysis on streaming data. To benchmark the performance of CaImAn we collected and combined a corpus of manual annotations from multiple labelers on nine mouse two-photon datasets. We demonstrate that CaImAn achieves near-human performance in detecting locations of active neurons.

Show Abstract
2021

Excited states in variational Monte Carlo using a penalty method

Shivesh Pathak, B. Busemeyer, João N. B. Rodrigues, L. Wagner

The authors present a technique using variational Monte Carlo to solve for excited states of electronic systems. The technique is based on enforcing orthogonality to lower energy states, which results in a simple variational principle for the excited states. Energy optimization is then used to solve for the excited states. An application to the well-characterized benzene molecule, in which 10,000 parameters are optimized for the first 12 excited states.Agreement within approximately 0.15 eV is obtained with higher scaling coupled cluster methods; small disagreements with experiment are likely due to vibrational effects.

Show Abstract

Swirling Instability of the Microtubule Cytoskeleton

D. Stein, G. De Canio, E. Lauga, M. Shelley, R. Goldstein

In the cellular phenomena of cytoplasmic streaming, molecular motors carrying cargo along a network of microtubules entrain the surrounding fluid. The piconewton forces produced by individual motors are sufficient to deform long microtubules, as are the collective fluid flows generated by many moving motors. Studies of streaming during oocyte development in the fruit fly Drosophila melanogaster have shown a transition from a spatially disordered cytoskeleton, supporting flows with only short-ranged correlations, to an ordered state with a cell-spanning vortical flow. To test the hypothesis that this transition is driven by fluid-structure interactions, we study a discrete-filament model and a coarse-grained continuum theory for motors moving on a deformable cytoskeleton, both of which are shown to exhibit a swirling instability to spontaneous large-scale rotational motion, as observed.

Show Abstract

From heterogeneous datasets to predictive models of embryonic development

S. Dutta, A. Patel, S. Keenan, S. Shvartsman

Modern studies of embryogenesis are increasingly quantitative, powered by rapid advances in imaging, sequencing, and genome manipulation technologies. Deriving mechanistic insights from the complex datasets generated by these new tools requires systematic approaches for data-driven analysis of the underlying developmental processes. Here we use data from our work on signal-dependent gene repression in the fruit fly, Drosophila melanogaster, to illustrate how computational models can compactly summarize quantitative results of live imaging, chromatin immunoprecipitation, and optogenetic perturbation experiments. The presented computational approach is ideally suited for integrating rapidly accumulating quantitative data and for guiding future studies of embryogenesis.

Show Abstract
January 13, 2021

Topological Charge Pumping in Excitonic Insulators

Zhiyuan Sun, A. Millis

We show that in excitonic insulators with s-wave electron-hole pairing, an applied electric field (either pulsed or static) can induce a p-wave component to the order parameter, and further drive it to rotate in the s+ip plane, realizing a Thouless charge pump. In one dimension, each cycle of rotation pumps exactly two electrons across the sample. Higher dimensional systems can be viewed as a stack of one dimensional chains in momentum space in which each chain crossing the fermi surface contributes a channel of charge pumping. Physics beyond the adiabatic limit, including in particular dissipative effects is discussed.

Show Abstract

A Micromachined Picocalorimeter Sensor for Liquid Samples with Application to Chemical Reactions and Biochemistry

Jinhye Bae, Juanjuan Zheng, D. Needleman

Calorimetry has long been used to probe the physical state of a system by measuring the heat exchanged with the environment as a result of chemical reactions or phase transitions. Application of calorimetry to microscale biological samples, however, is hampered by insufficient sensitivity and the difficulty of handling liquid samples at this scale. Here, a micromachined calorimeter sensor that is capable of resolving picowatt levels of power is described. The sensor consists of low-noise thermopiles on a thin silicon nitride membrane that allow direct differential temperature measurements between a sample and four coplanar references, which significantly reduces thermal drift. The partial pressure of water in the ambient around the sample is maintained at saturation level using a small hydrogel-lined enclosure. The materials used in the sensor and its geometry are optimized to minimize the noise equivalent power generated by the sensor in response to the temperature field that develops around a typical sample. The experimental response of the sensor is characterized as a function of thermopile dimensions and sample volume, and its capability is demonstrated by measuring the heat dissipated during an enzymatically catalyzed biochemical reaction in a microliter-sized liquid droplet. The sensor offers particular promise for quantitative measurements on biological systems.

Show Abstract
January 12, 2021

Identifying intracellular signaling modules and exploring pathways associated with breast cancer recurrence

X. Chen, J. Gu, A. Neuwald, L. Hilakivi-Clarke, R. Clarke, J. Xuan

Exploring complex modularization of intracellular signal transduction pathways is critical to understanding aberrant cellular responses during disease development and drug treatment. IMPALA (Inferred Modularization of PAthway LAndscapes) integrates information from high throughput gene expression experiments and genome-scale knowledge databases to identify aberrant pathway modules, thereby providing a powerful sampling strategy to reconstruct and explore pathway landscapes. Here IMPALA identifies pathway modules associated with breast cancer recurrence and Tamoxifen resistance. Focusing on estrogen-receptor (ER) signaling, IMPALA identifies alternative pathways from gene expression data of Tamoxifen treated ER positive breast cancer patient samples. These pathways were often interconnected through cytoplasmic genes such as IRS1/2, JAK1, YWHAZ, CSNK2A1, MAPK1 and HSP90AA1 and significantly enriched with ErbB, MAPK, and JAK-STAT signaling components. Characterization of the pathway landscape revealed key modules associated with ER signaling and with cell cycle and apoptosis signaling. We validated IMPALA-identified pathway modules using data from four different breast cancer cell lines including sensitive and resistant models to Tamoxifen. Results showed that a majority of genes in cell cycle/apoptosis modules that were up-regulated in breast cancer patients with short survivals (< 5 years) were also over-expressed in drug resistant cell lines, whereas the transcription factors JUN, FOS, and STAT3 were down-regulated in both patient and drug resistant cell lines. Hence, IMPALA identified pathways were associated with Tamoxifen resistance and an increased risk of breast cancer recurrence. The IMPALA package is available at https://dlrl.ece.vt.edu/software/.

Show Abstract

Identifying intracellular signaling modules and exploring pathways associated with breast cancer recurrence

X. Chen, J. Gu, A. Neuwald, L. Hilakivi-Clarke, R. Clarke, J. Xuan

Exploring complex modularization of intracellular signal transduction pathways is critical to understanding aberrant cellular responses during disease development and drug treatment. IMPALA (Inferred Modularization of PAthway LAndscapes) integrates information from high throughput gene expression experiments and genome-scale knowledge databases to identify aberrant pathway modules, thereby providing a powerful sampling strategy to reconstruct and explore pathway landscapes. Here IMPALA identifies pathway modules associated with breast cancer recurrence and Tamoxifen resistance. Focusing on estrogen-receptor (ER) signaling, IMPALA identifies alternative pathways from gene expression data of Tamoxifen treated ER positive breast cancer patient samples. These pathways were often interconnected through cytoplasmic genes such as IRS1/2, JAK1, YWHAZ, CSNK2A1, MAPK1 and HSP90AA1 and significantly enriched with ErbB, MAPK, and JAK-STAT signaling components. Characterization of the pathway landscape revealed key modules associated with ER signaling and with cell cycle and apoptosis signaling. We validated IMPALA-identified pathway modules using data from four different breast cancer cell lines including sensitive and resistant models to Tamoxifen. Results showed that a majority of genes in cell cycle/apoptosis modules that were up-regulated in breast cancer patients with short survivals (< 5 years) were also over-expressed in drug resistant cell lines, whereas the transcription factors JUN, FOS, and STAT3 were down-regulated in both patient and drug resistant cell lines. Hence, IMPALA identified pathways were associated with Tamoxifen resistance and an increased risk of breast cancer recurrence. The IMPALA package is available at https://dlrl.ece.vt.edu/software/ .

Show Abstract
Scientific Reports , 11(1): 385
January 11, 2021

Identifying intracellular signaling modules and exploring pathways associated with breast cancer recurrence

X. Chen, A. Neuwald, L. Hilakivi-Clarke, R. Clarke, J. Xuan

Exploring complex modularization of intracellular signal transduction pathways is critical to understanding aberrant cellular responses during disease development and drug treatment. IMPALA (Inferred Modularization of PAthway LAndscapes) integrates information from high throughput gene expression experiments and genome-scale knowledge databases to identify aberrant pathway modules, thereby providing a powerful sampling strategy to reconstruct and explore pathway landscapes. Here IMPALA identifies pathway modules associated with breast cancer recurrence and Tamoxifen resistance. Focusing on estrogen-receptor (ER) signaling, IMPALA identifies alternative pathways from gene expression data of Tamoxifen treated ER positive breast cancer patient samples. These pathways were often interconnected through cytoplasmic genes such as IRS1/2, JAK1, YWHAZ, CSNK2A1, MAPK1 and HSP90AA1 and significantly enriched with ErbB, MAPK, and JAK-STAT signaling components. Characterization of the pathway landscape revealed key modules associated with ER signaling and with cell cycle and apoptosis signaling. We validated IMPALA-identified pathway modules using data from four different breast cancer cell lines including sensitive and resistant models to Tamoxifen. Results showed that a majority of genes in cell cycle/apoptosis modules that were up-regulated in breast cancer patients with short survivals (< 5 years) were also over-expressed in drug resistant cell lines, whereas the transcription factors JUN, FOS, and STAT3 were down-regulated in both patient and drug resistant cell lines. Hence, IMPALA identified pathways were associated with Tamoxifen resistance and an increased risk of breast cancer recurrence. The IMPALA package is available at https://dlrl.ece.vt.edu/software/.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.